Wireless Multimedia Sensor Networks: Challenges and Opportunities

Sajal K. Das
E-mail: das@uta.edu
Dept. of Computer Science and Engineering
University of Texas at Arlington

Center for Research in Wireless Mobility and Networking
http://crewman.uta.edu
Position Statements

- Collaborative Multimedia (Multi-modal) Sensing is the way to go!

- Pervasive Computing and Social Informatics is the future!
We live in a physical world, which we need to understand, serve, and control.
Opportunistic Clouds of Multi-modal Wireless Access Devices, Heterogeneous Access Networks, Services and Applications
Wireless Sensor Networks (WSN)

Computation
Sensory Data: A/D conversion, Compression, Filtering, Aggregation, Analysis

Communication (Wireless)
Broadcast sensory data, Dissemination, Routing

Control (Sensing / Actuation)
Sensing the physical world: temperature, humidity, pressure, light, velocity, sound, image

Center for Research in Wireless Mobility and Networking (CReWMaN)
Static WSNs

Traditional WSN architecture
Mobile WSNs
WSNs with mobile relays

Emerging Trends in Sensors
Multimedia WSNs

- Multimedia sensors (with image, audio/video streaming)
 - Application-specific devices
 - Surveillance cameras, stereo-cameras
 - Multimedia sensing platforms
 - Off-the-shelf products
 - Custom platforms

Emerging Trends in Sensing Applications
Smartphones and participatory sensing

- **Smartphones as sensing platforms**
 - Abundance of sensors
 - Acceleration, location, sound, video, orientation
 - Rich in processing and storage resources
 - Enabling computational-intensive applications
 - Several wireless technologies
 - WiFi, Bluetooth, long range cellular radio

- **Participatory, persuasive, social sensing applications**
 - Users involved in sensing campaigns
 - Traffic/accident monitoring, well being, pollution control
 - Incentives for participation
Multimedia and Heterogeneous WSNs
Putting everything together

- A wide variety of sensing devices
- Each device best suited for a specific task
- Exploit heterogeneity for collaborative sensing
Advantages of Collaborative Sensing
Energy conservation and sensing accuracy

- **Multi-scale** and triggered sensing
 - Low-power low-accuracy sensor can be used
 - Higher accuracy (power-hungry) sensors can be exploited only when necessary
 - Tradeoff between accuracy and energy consumption

- **Different sensing modalities**
 - Better characterization of the environment
 - Data fusion
 - Higher efficiency
 - Less bandwidth and energy usage

Premise: Sensors Everywhere

- Ultra light, ultra power, embeddable wireless devices networked everywhere (Internet of things)

- Sensors will be all pervasive, from clothing to coffee mugs to building structures

- Wireless and ubiquitous connectivity taken for granted

- Cognitive networks based overlay architectures

- Content rich (multi-modal) sensor applications

- Information deluge (e.g., recording every event in life)
Broader Impacts

- Societal Grand Challenges (National & Global)
 - Security and Safety (before, during and after events)
 - Healthcare (health risks, wellbeing and care)
 - Energy & Sustainability (monitoring and mitigation)
 - Extreme Events Management (disasters, forest-fires, ...)

- Citizen Science
 - Smart phones w/ burgeoning capabilities and sensors
 - Deep penetration of mobile devices and networking

- How to handle pervasive computing at scale?
Energy and Sustainability

- Smart appliances, buildings, power grid
 - Net-zero energy buildings
 - Minimize peak system usage
 - No cascading failures
 - Climate control
Smart Health Care

- Infusion pump
- Operating room of future
 - Patient records at every point of care
 - 24/7 monitoring and treatment
 - Assisted Technology for everyone
 - Smart prosthetics
- Embedded medical devices

Center for Research in Wireless Mobility and Networking (CREWMan)
August 1, 2011
Wireless Multimedia Sensor Networks: New Challenges

- How to handle higher data rates (video/audio streaming)?
 - Innovative energy-saving architectures, algorithms, and protocols

- How to exploit higher spatio-temporal data correlation?
 - In-network: Fusion, estimation, detection, filtering, gathering, ...

- How to provide higher information assurance?
 - Accuracy, reliability, fault-tolerance, resiliency, security, robustness, ...

- How to deal with emerging security and privacy threats?
 - Virus spreading, e.g., Cabir for wireless cell phone networks
Research Opportunities

Uncertainty Management

- How to deal with (or tame) inherent Uncertainty?
 - sensing, wireless communications, mobility, topology control, coverage, routing, bandwidth and battery power, ...
 - distributed collaboration and coordination, aggregation (fusion), processing, decision making, duty cycling, ...

- Context Resolution and Situation-Awareness
 - How to unambiguously capture contexts from multi-modal sources despite noisy and incomplete information?

- Supporting QoS and QoI (quality of information)
 - How to improve information accuracy, reliability, latency? How to measure sensing quality in presence of uncertainty?
Socio-Pervasive World

Environment Sensing / Smart Environments

Disaster / Emergency Response

Situation Awareness: Humans as sensors feed multi-modal data streams

Pervasive Computing

People-Centric Sensing

Social

Informatics

Smart Hearth Care

Personal Sensing

Public Sensing

Social Sensing

ECG
Blood pressure
SpO2 ESR
Accelerometer

Evaluate
Sense
Intervene
Identify
Assess
Recap: Position Statements

- Collaborative Multimedia (Multi-modal) Sensing is the way to go!
- Pervasive Computing and Social Informatics is the future!